Involvement of histone acetyltransferase (HAT) in ethanol-induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression.
نویسندگان
چکیده
Ethanol treatment increases gene expression in the liver through mechanisms that are not clearly understood. Histone acetylation has been shown to induce transcriptional activation. We have investigated the characteristics and mechanisms of ethanol-induced histone H3 acetylation in rat hepatocytes. Immunocytochemical and immunoblot analysis revealed that ethanol treatment significantly increased H3 acetylation at Lys9 with negligible effects at Lys14, -18, and -23. Acute in vivo administration of alcohol in rats produced the same results as in vitro observations. Nuclear extracts from ethanol-treated hepatocytes increased acetylation in H3 peptide to a greater extent than extracts from untreated cells, suggesting that ethanol either increased the expression level or the specific activity of histone acetyltransferases (HAT). Use of different H3 peptides indicated that ethanol selectively modulated HAT(s) targeting H3-Lys9. Treatment with acetate, an ethanol metabolite, also increased acetylation of H3-Lys9 and modulated HAT(s) in the same manner as ethanol, suggesting that acetate mediates the ethanol-induced effect on HAT. Inhibitors of MEK (U0126) and JNK (SP600125), but not p38 MAPK inhibitor (SB203580), suppressed ethanol-induced H3 acetylation. However, U0126 and SP600125 did not significantly affect ethanol-induced effect on HAT, suggesting that ERK and JNK regulate histone acetylation through a separate pathway(s) that does not involve modulation of HAT. Chromatin immunoprecipitation assay demonstrated that ethanol treatment increased the association of the class I alcohol dehydrogenase (ADH I) gene with acetylated H3-Lys9. These data provide first evidence that ethanol increases acetylation of H3-Lys9 through modulation of HAT(s) and that histone acetylation may underlie the mechanism for ethanol-induced ADH I gene expression.
منابع مشابه
Different mechanisms for histone acetylation by ethanol and its metabolite acetate in rat primary hepatocytes.
Ethanol and its major metabolite acetate both induced histone H3 acetylation in primary culture of rat hepatocytes. The acetylation by ethanol was dependent on the reactive oxygen species and mitogen-activated protein kinase pathway, whereas that by acetate was independent of both pathways. Ethanol increased CYP2E1 protein expression but acetate had negligible effect. The level of phospho-H2AX,...
متن کاملHistone acetylation is involved in TCDD-induced cleft palate formation in fetal mice
The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD)‑induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oi...
متن کاملRegulation of macrophage cyclooxygenase-2 gene expression by modifications of histone H3.
Some transcription factors involved in the regulation of cyclooxygenase 2 (COX-2) expression in macrophage, including NF-kappaB, interact with p300, which contains histone acetyltransferase (HAT) enzyme complex. Chromatin structure is regulated by modifying enzymes, including HAT, and plays an important role in eukaryotic gene regulation through histone modification. We hypothesized that change...
متن کاملHistone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development.
To better understand the role of histone lysine acetylation in transcription in Plasmodium falciparum, we sought to attenuate histone acetyltransferase (HAT) activity using anacardic acid (AA). We showed that AA reversibly and noncompetitively inhibited the HAT activity of recombinant PfGCN5. To a lesser extent, AA inhibited the PfGCN5 activity in parasite nuclear extracts but did not affect hi...
متن کاملA Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection
Immune response during pathogen infection requires extensive transcription reprogramming. A fundamental mechanism of transcriptional regulation is histone acetylation. However, how pathogens interfere with this process to promote disease remains largely unknown. Here we demonstrate that the cytoplasmic effector PsAvh23 produced by the soybean pathogen Phytophthora sojae acts as a modulator of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005